DocumentCode :
1928538
Title :
Formal models of incremental learning and their analysis
Author :
Lange, Steffen ; Zilles, Sandra
Author_Institution :
Deutsches Forschungszentrum fur Kunstliche Intelligenz, Saarbrucken, Germany
Volume :
4
fYear :
2003
fDate :
20-24 July 2003
Firstpage :
2691
Abstract :
We consider concept learning from examples. The learner receives - step by step - larger and larger initial segments of a sequence of examples describing an unknown target concept, processes these examples, and computes hypotheses. The learner is successful, if its hypotheses stabilize on a correct representation of the target concept. The underlying model is called identification in the limit. The present study concerns different versions of incremental learning in the limit. In contrast to the general case, now the learner has only limited access to the examples provided so far. In the special case of iterative learning, the learner builds its new hypotheses just on the basis of the current hypothesis and the next example, without having access to any of the other examples presented so far. In the case of bounded example-memory learning, the learner may in addition memorize up to an a priori fixed number of examples already presented. Formal studies have shown that restricting the accessibility of the input data results in a loss of learning power, i.e. there are concept classes learnable in the limit, but not identifiable by any incremental learner at all. The present analysis aims at illustrating this phenomenon and giving insights into the structure of concept classes incremental learners can cope with. Examples of identifiable and non-identifiable classes are given; different learning models are compared to one another with respect to the competence of the corresponding learners.
Keywords :
identification; learning by example; bounded example memory learning; concept learning from examples; formal models; identification in the limit; incremental learning in the limit; Gold; Learning systems; Writing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2003. Proceedings of the International Joint Conference on
ISSN :
1098-7576
Print_ISBN :
0-7803-7898-9
Type :
conf
DOI :
10.1109/IJCNN.2003.1223992
Filename :
1223992
Link To Document :
بازگشت