DocumentCode :
1929831
Title :
Mammogram image feature selection using unsupervised tolerance rough set relative reduct algorithm
Author :
Aroquiaraj, I.L. ; Thangavel, K.
Author_Institution :
Dept. of Comput. Sci., Periyar Univ., Salem, India
fYear :
2013
fDate :
21-22 Feb. 2013
Firstpage :
479
Lastpage :
484
Abstract :
Feature Selection (FS) aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. In the supervised FS methods, various feature subsets are evaluated using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. In this paper, a novel unsupervised feature selection in mammogram image, using tolerance rough set based relative reduct is proposed. And also, compared with Tolerance Quick Reduct and PSO - Relative Reduct unsupervised feature selection methods. A typical mammogram image processing system generally consists of mammogram image acquisition, pre-processing of image segmentation, feature extraction, feature selection and classification. The proposed method is used to reduce features from the extracted features and the method is compared with existing unsupervised features selection methods. The proposed method is evaluated through clustering and classification algorithms in K-means and WEKA.
Keywords :
data mining; feature extraction; image classification; image segmentation; mammography; medical image processing; pattern clustering; rough set theory; unsupervised learning; K-means; RST; WEKA; classification algorithm; clustering algorithm; data mining; decision class label; feature classification; feature extraction; feature subset evaluation; image segmentation; mammogram image acquisition; mammogram image feature selection; mammogram image processing system; relative reduct unsupervised feature selection method; rough set theory; supervised FS method; unsupervised learning; unsupervised tolerance rough set relative reduct algorithm; Accuracy; Algorithm design and analysis; Classification algorithms; Feature extraction; Image segmentation; Indexes; Pattern recognition; Mammography; PSO — Relative Reduct; Rough Set Theory; Tolerance Quick Reduct; Tolerance Rough Set; Unsupervised Feature Selection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, Informatics and Mobile Engineering (PRIME), 2013 International Conference on
Conference_Location :
Salem
Print_ISBN :
978-1-4673-5843-9
Type :
conf
DOI :
10.1109/ICPRIME.2013.6496718
Filename :
6496718
Link To Document :
بازگشت