DocumentCode :
1930067
Title :
Hierarchical Artificial Neural Networks for Recognizing High Similar Large Data Sets
Author :
Lu, Yen-Ling ; Fahn, Chin-shyurng
Author_Institution :
Nat. Taiwan Univ. of Sci. & Technol., Taipei
Volume :
4
fYear :
2007
fDate :
19-22 Aug. 2007
Firstpage :
1930
Lastpage :
1935
Abstract :
This paper proposes a hierarchical artificial neural network for recognizing high similar large data sets. It is usually required to classify large data sets with high similar characteristics in many applications. Analyzing and identifying those data is a laborious task when the methods adopted are primarily based on visual inspection. In many field applications, data sets are measured and recorded continuously using automatic monitoring equipments. Therefore, a large amount of data can be collected, and manual inspection has become an unsuitable approach to recognizing those data. This proposed hierarchical neural network integrates self-organizing feature map (SOM) networks and learning vector quantization (LVQ) networks. The SOM networks provide an approximate method for computing the input vectors in an unsupervised manner. Then the computation of the SOM may be viewed as the first stage of the proposed hierarchical network. The second stage is provided by the LVQ networks based on a supervised learning technique that uses class information to improve the quality of the classifier from the first stage. The multistage hierarchical network attempts to factorize the overall input vector into a number of small groups, each of which requires very little computation. Consequently, by use of the proposed network, the loss in accuracy can be small.
Keywords :
pattern recognition; self-organising feature maps; vector quantisation; LVQ; automatic monitoring equipments; hierarchical artificial neural networks; high similar large data sets; learning vector quantization; self-organizing feature map; visual inspection; Artificial neural networks; Computer networks; Computer science; Cybernetics; Data engineering; Electronic mail; Inspection; Machine learning; Nearest neighbor searches; Tree data structures; LVQ; Recognition; SOM; Similarity search;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2007 International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-0973-0
Electronic_ISBN :
978-1-4244-0973-0
Type :
conf
DOI :
10.1109/ICMLC.2007.4370463
Filename :
4370463
Link To Document :
بازگشت