Title :
Multi-camera track-before-detect
Author :
Taj, Murtaza ; Cavallaro, Andrea
Author_Institution :
Sch. of Electron. Eng. & Comput. Sci., Queen Mary Univ. of London, London, UK
fDate :
Aug. 30 2009-Sept. 2 2009
Abstract :
We present a novel multi-camera multi-target fusion and tracking algorithm for noisy data. Information fusion is an important step towards robust multi-camera tracking and allows us to reduce the effect of projection and parallax errors as well as of the sensor noise. Input data from each camera view are projected on a top-view through multi-level homographic transformations. These projected planes are then collapsed onto the top-view to generate a detection volume. To increase track consistency with the generated noisy data we propose to use a track-before-detect particle filter (TBD-PF) on a 5D state-space. TBD-PF is a Bayesian method which extends the target state with the signal intensity and evaluates each image segment against the motion model. This results in filtering components belonging to noise only and enables tracking without the need of hard thresholding the signal. We demonstrate and evaluate the proposed approach on real multi-camera data from a basketball match.
Keywords :
Bayes methods; image sensors; particle filtering (numerical methods); sensor fusion; tracking; 5D state-space; Bayesian method; camera view; filtering component; information fusion; multicamera multitarget fusion; multicamera multitarget tracking; multicamera track-before-detect; multilevel homographic transformation; noisy data; robust multicamera tracking; signal intensity; track-before-detect particle filter; Bayesian methods; Cameras; Image segmentation; Noise generators; Noise reduction; Noise robustness; Particle filters; Particle tracking; Sensor fusion; Target tracking;
Conference_Titel :
Distributed Smart Cameras, 2009. ICDSC 2009. Third ACM/IEEE International Conference on
Conference_Location :
Como
Print_ISBN :
978-1-4244-4620-9
Electronic_ISBN :
978-1-4244-4620-9
DOI :
10.1109/ICDSC.2009.5289405