DocumentCode :
1933685
Title :
Performance Evaluation of an ANN FF Classifier of Raw EEG Data using ROC Analysis
Author :
Sovierzoski, Miguel Antonio ; Mendes de Azevedo, Fernando ; Argoud, Fernanda Isabel Marques
Author_Institution :
UTFPR, IEB-UFSC, Curitiba
Volume :
1
fYear :
2008
fDate :
27-30 May 2008
Firstpage :
332
Lastpage :
336
Abstract :
Due to the increasing use of intelligent and automated systems, pattern, event or signal classification is becoming more important, representing a research area under expansion. The classifier systems indicate results comparable to human classification, or human intervention, with substantial reduction of time and resources. This study presents a methodology for evaluation of an ANN performance using the ROC curve. The statistical performance indexes and the ROC curve are obtained during the supervised training of the ANN FF classifier. The methodology presented was used in the performance evaluation of an ANN classifier of epileptiform events in raw EEG data.
Keywords :
electroencephalography; feedforward neural nets; medical signal processing; pattern classification; sensitivity analysis; statistical analysis; ANN FF classifier performance evaluation; ROC analysis; automated systems; epileptiform events; intelligent systems; raw EEG data; statistical performance index; Biomedical engineering; Data analysis; Electroencephalography; Epilepsy; Fourier transforms; Humans; Neurons; Pattern classification; Performance analysis; Signal analysis; ANN Classifier; EEG Data; ROC Analysis; ROC Curve;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on
Conference_Location :
Sanya
Print_ISBN :
978-0-7695-3118-2
Type :
conf
DOI :
10.1109/BMEI.2008.220
Filename :
4548687
Link To Document :
بازگشت