DocumentCode :
1935631
Title :
Exploiting the functional training approach in Radial Basis Function networks
Author :
Cabrita, Cristiano L. ; Ruano, António E. ; Ferreira, Pedro M.
Author_Institution :
Univ. of Algarve, Faro, Portugal
fYear :
2011
fDate :
19-21 Sept. 2011
Firstpage :
1
Lastpage :
6
Abstract :
This paper investigates the application of a novel approach for the parameter estimation of a Radial Basis Function (RBF) network model. The new concept (denoted as functional training) minimizes the integral of the analytical error between the process output and the model output [1]. In this paper, the analytical expressions needed to use this approach are introduced, both for the back-propagation and the Levenberg-Marquardt algorithms. The results show that the proposed methodology outperforms the standard methods in terms of function approximation, serving as an excellent tool for RBF networks training.
Keywords :
backpropagation; function approximation; parameter estimation; radial basis function networks; Levenberg-Marquardt algorithms; RBF network model; backpropagation; function approximation; functional training approach; model output; parameter estimation; process output; radial basis function network model; Approximation algorithms; Biological neural networks; Equations; Jacobian matrices; Neurons; Radial basis function networks; Training; Radial Basis Neural networks training; functional back-propagation; local nonlinear optimization; parameter separability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Signal Processing (WISP), 2011 IEEE 7th International Symposium on
Conference_Location :
Floriana
Print_ISBN :
978-1-4577-1403-0
Type :
conf
DOI :
10.1109/WISP.2011.6051694
Filename :
6051694
Link To Document :
بازگشت