Title :
Sensor and computing resource management for a small satellite
Author :
Bhatia, Abhilasha ; Goehner, Kyle ; Sand, John ; Straub, Jeremy ; Mohammad, Atif ; Korvald, Christoffer ; Nervold, Anders Kose
Author_Institution :
Department of Computer Science, University of North Dakota, 3950 Campus Road, Stop 9015, Grand Forks, 58202-9015, USA
Abstract :
A small satellite in a low-Earth orbit (e.g., approximately a 300 to 400 km altitude) has an orbital velocity in the range of 8.5 km/s and completes an orbit approximately every 90 minutes. For a satellite with minimal attitude control, this presents a significant challenge in obtaining multiple images of a target region. Presuming an inclination in the range of 50 to 65 degrees, a limited number of opportunities to image a given target or communicate with a given ground station are available, over the course of a 24-hour period. For imaging needs (where solar illumination is required), the number of opportunities is further reduced. Given these short windows of opportunity for imaging, data transfer, and sending commands, scheduling must be optimized. In addition to the high-level scheduling performed for spacecraft operations, payload-level scheduling is also required. The mission requires that images be post-processed to maximize spatial resolution and minimize data transfer (through removing overlapping regions). The payload unit includes GPS and inertial measurement unit (IMU) hardware to aid in image alignment for the aforementioned. The payload scheduler must, thus, split its energy and computing-cycle budgets between determining an imaging sequence (required to capture the highly-overlapping data required for super-resolution and adjacent areas required for mosaicking), processing the imagery (to perform the super-resolution and mosaicking) and preparing the data for transmission (compressing it, etc.). This paper presents an approach for satellite control, scheduling and operations that allows the cameras, GPS and IMU to be used in conjunction to acquire higher-resolution imagery of a target region.
Keywords :
Cameras; Global Positioning System; Image coding; Image resolution; Payloads; Satellites; Software;
Conference_Titel :
Aerospace Conference, 2013 IEEE
Conference_Location :
Big Sky, MT
Print_ISBN :
978-1-4673-1812-9
DOI :
10.1109/AERO.2013.6497398