DocumentCode :
1942771
Title :
Edge extraction method study based on maximum entropy for linear lane identifying and tracking
Author :
Rong-ben, Wang ; Tian-hong, W. ; Li-sheng, Jin ; Jiang-wei, Chu ; Bai-yuan, Gu
Author_Institution :
Transp. Coll., Jilin Univ., Changchun, China
fYear :
2005
fDate :
6-8 June 2005
Firstpage :
849
Lastpage :
854
Abstract :
In order to better abstract lane mark edge and identify it, this paper proposes a new edge extraction method based on maximum entropy. This method combines both one-dimension and two-dimension entropy information. Meanwhile, image window variation technology is also applied for lane mark edge extraction and lane mark parameters can be acquired based on the bi-normalized adjustable template. Finally lane mark real-time tracking is realized by applying trapezia AOI method.
Keywords :
driver information systems; edge detection; image segmentation; maximum entropy methods; object detection; road safety; tracking; binormalized adjustable template; image window variation technology; lane mark edge extraction method; linear lane identification; maximum entropy information; real-time tracking; trapezia AOI method; Educational institutions; Entropy; Equations; Frequency; Gray-scale; Histograms; Image segmentation; Roads; Transportation; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Vehicles Symposium, 2005. Proceedings. IEEE
Print_ISBN :
0-7803-8961-1
Type :
conf
DOI :
10.1109/IVS.2005.1505211
Filename :
1505211
Link To Document :
بازگشت