Title :
Mining the student programming performance using rough set
Author :
Mohsin, Mohamad Farhan Mohamad ; Norwawi, Norita Md ; Hibadullah, Cik Fazilah ; Wahab, Mohd Helmy Abd
Author_Institution :
Univ. Utara Malaysia, Malaysia
Abstract :
One of the powerful data mining analysis is it can generates different set of knowledge when similar problem is presented to different data mining techniques. In this paper, a programming dataset was mined using rough set in order to investigate the significant factors that may influence students programming performance based on information from previous student performance. Then, the result was compared with other researches which had previously explored the data using statistic, clustering, and association rule. The dataset consists of 419 records with 70 attributes were pre-processed and then mined using rough set. The result indicates rough set has identified several new characteristics. The student who has been exposed to programming prior to entering university and obtained average score in Mathematics, English, and Malay Language subject during secondary Malaysian School Certificate (SPM) examination were among strong indicators that contributes to good programming grades. Besides that, the personality factor; the investigative and social type plus average cognitive person were also found as important factors that influence programming. This finding can be a guideline for the faculty to plan teaching and learning program for new registered student.
Keywords :
computer science education; data mining; educational administrative data processing; natural languages; performance evaluation; programming languages; rough set theory; English language; Malay language subject; Malaysian School Certificate examination; association rule; cognitive person; data mining analysis; mathematics subject; programming dataset; programming grade; rough set; student programming performance; Accuracy; Classification algorithms; Computational modeling; Data mining; Programming profession; influence factor; programming; rough set;
Conference_Titel :
Intelligent Systems and Knowledge Engineering (ISKE), 2010 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4244-6791-4
DOI :
10.1109/ISKE.2010.5680824