DocumentCode :
1945738
Title :
Three-dimensional electromagnetic modeling of composite dielectric materials
Author :
O´Connor, K.A. ; Curry, R.D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA
fYear :
2011
fDate :
19-23 June 2011
Firstpage :
274
Lastpage :
279
Abstract :
When manufacturing composite dielectric materials with various shapes, sizes, dielectric properties, and amounts of each constituent element, it is beneficial to predict the effective dielectric constant and the distribution of electric fields within the composite. A three-dimensional electromagnetic model has recently been developed at the University of Missouri to aid in this analysis. CST EM Studio, which specializes in three-dimensional electromagnetic simulation, was chosen for the simulation environment. A custom-developed software program automates the construction and electromagnetic analysis of the composite material within CST EM Studio. The program virtually constructs a composite with up to thousands of distinct composite elements placed in a quasi-random arrangement according to user-defined input parameters. The program provides a means of efficiently and accurately modeling composite systems without manually creating the high number of individual composite elements. The program enables user specification over the simulation parameters and automated analysis of the simulation results through a user interface. The dielectric constant of each composite element, the loading percentages, and multiple physical particle parameters, including the shape, size, and density, are user-defined. The effective dielectric constant of the composite is determined by analyzing the capacitance of a parallel plate capacitor made with the virtual composite material. Additionally, the distribution of electric fields through the composite elements and at potential triple points can be analyzed for potential sites of failure. A detailed description of the modeling method and program is provided. Commonly-used equations for the effective dielectric constant of composites are introduced, and comparisons are presented between the simulated effective dielectric constant and the values calculated from those equations for various particle loading percentages. Lastly, examples of h- w the electric field is distributed through the composite structure are included.
Keywords :
composite materials; computational electromagnetics; dielectric materials; electric fields; electromagnetic wave propagation; composite dielectric materials manufacturing; composite element; dielectric properties; electric fields; three-dimensional electromagnetic modeling; Computational modeling; Dielectric constant; Electric fields; Equations; Materials; Mathematical model; Numerical models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pulsed Power Conference (PPC), 2011 IEEE
Conference_Location :
Chicago, IL
ISSN :
2158-4915
Print_ISBN :
978-1-4577-0629-5
Type :
conf
DOI :
10.1109/PPC.2011.6191429
Filename :
6191429
Link To Document :
بازگشت