DocumentCode :
1945802
Title :
Stochastic Gradient Algorithm for Multi-input Systems Based on the Auxiliary Model
Author :
Liao, Yuwu ; Wang, Xianfang ; Ding, Rui Feng
Author_Institution :
Dept. of Phys. & Electron. Inf. Technol., Xiangfan Univ., Xiangfan
Volume :
1
fYear :
2008
fDate :
12-14 Dec. 2008
Firstpage :
168
Lastpage :
171
Abstract :
This paper presents an auxiliary model based stochastic gradient parameter estimation algorithm for multi-input output-error systems by minimizing a quadratic cost function. The basic idea is to replace the unknown variables in the information vector with the outputs of an auxiliary model or estimated outputs and the analysis and simulation results indicate that the parameter estimates converge to their true values for persistent excitation input signals. The algorithm proposed has significant computational advantage over existing least squares identification algorithms. A simulation example is given.
Keywords :
gradient methods; parameter estimation; stochastic processes; auxiliary model; information vector; multiinput output-error system; quadratic cost function; stochastic gradient parameter estimation algorithm; Bismuth; Computational modeling; Computer science; Least squares methods; Parameter estimation; Physics; Polynomials; Software algorithms; Software engineering; Stochastic systems; Stochastic gradient algorithm; auxiliary model; multi-input systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Software Engineering, 2008 International Conference on
Conference_Location :
Wuhan, Hubei
Print_ISBN :
978-0-7695-3336-0
Type :
conf
DOI :
10.1109/CSSE.2008.1032
Filename :
4721718
Link To Document :
بازگشت