• DocumentCode
    1950375
  • Title

    Agnostic Learning with Ensembles of Classifiers

  • Author

    Wichard, Jörg D.

  • Author_Institution
    Inst. of Molecular Pharmacology Molecular Modelling Group, Berlin-Buch
  • fYear
    2007
  • fDate
    12-17 Aug. 2007
  • Firstpage
    2887
  • Lastpage
    2891
  • Abstract
    We present a method for building ensembles of models in order to build proper classifiers. The main advantage of our method is an automated model selection procedure and an automated model parameter estimation. The method is an extension of the classical bagging and the K-fold-cross-validation approach.
  • Keywords
    learning (artificial intelligence); pattern classification; regression analysis; K-fold-cross-validation approach; agnostic learning; automated model parameter estimation; automated model selection procedure; classical bagging approach; ensemble building; pattern classification; regression analysis; Bagging; Biomedical informatics; Decision trees; Neural networks; Parameter estimation; Predictive models; Supervised learning; Training data; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2007. IJCNN 2007. International Joint Conference on
  • Conference_Location
    Orlando, FL
  • ISSN
    1098-7576
  • Print_ISBN
    978-1-4244-1379-9
  • Electronic_ISBN
    1098-7576
  • Type

    conf

  • DOI
    10.1109/IJCNN.2007.4371418
  • Filename
    4371418