DocumentCode :
1950947
Title :
Hierarchal Decomposition of Neural Data using Boosted Mixtures of Hidden Markov Chains and its application to a BMI
Author :
Darmanjian, Shalom ; Paiva, Antonio ; Principe, Jose ; Sanchez, Justin
Author_Institution :
Florida Univ., Gainesville
fYear :
2007
fDate :
12-17 Aug. 2007
Firstpage :
3062
Lastpage :
3067
Abstract :
In this paper, we propose a simple algorithm that takes multidimensional neural input data and decomposes the joint likelihood into marginals using boosted mixtures of hidden Markov chains (BM-HMM). The algorithm applies techniques from boosting to create hierarchal dependencies between these marginal subspaces. Finally, borrowing ideas from mixture of experts, the local information is weighted and incorporated into an ensemble decision. Our results show that this algorithm is very simple to train and computationally efficient, while also providing the ability to reduce the input dimensionality for brain machine interfaces (BMIs).
Keywords :
hidden Markov models; human computer interaction; medical computing; multidimensional systems; neural nets; BMI; boosted mixtures; brain machine interfaces; hidden Markov chains; multidimensional neural input data; Animals; Boosting; Brain computer interfaces; Brain modeling; Computer interfaces; Hidden Markov models; Multidimensional systems; Neurons; Robots; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2007. IJCNN 2007. International Joint Conference on
Conference_Location :
Orlando, FL
ISSN :
1098-7576
Print_ISBN :
978-1-4244-1379-9
Electronic_ISBN :
1098-7576
Type :
conf
DOI :
10.1109/IJCNN.2007.4371449
Filename :
4371449
Link To Document :
بازگشت