Title :
Viscoplastic behavior of diamond die attach subjected to high temperature conditions
Author :
Msolli, S. ; Baazaoui, A. ; Dalverny, O. ; Alexis, J. ; Karama, M.
Author_Institution :
LGP, Univ. de Toulouse, Tarbes, France
Abstract :
In power electronic applications, diamond based semi-conductors appears to be a new way to widely increase the capabilities of power electronic converters. The main prospective expected is an increasing in system integration and power capabilities. The Diamonix project concerns the elaboration of a single-crystal diamond substrate with electronic quality and its associated packaging. The designed structure has to resist to temperatures varying between -50°C and +300°C. This paper deals with an experimental and numerical study of the diamond die attach solution. The development of a packaging for diamond component relies in particular on a specific choice of solder´s alloys for the junction die/substrate. To carry out this junction, AuGe and AlSi eutectic alloys were chosen and characterized; the choice of these two kinds of solders i.e. AuGe and AlSi is motivated by the practical elaboration process and the restrictions of hazardous substances (RoHS). The first solder has a melting temperature of 356°C; the second has a higher melting point of 577°C. In this paper, we present some numerical results obtained from FE simulations of two 2D configurations of simplified electronic packaging. The power electronic packaging is composed of a diamond die and a copper metallized Si3N4 ceramic substrate which are brazed together with either AuGe or AlSi solder alloy. To predict the thermomechanical behavior of the solders, a particular constitutive behavior law was implemented as a User MATerial subroutine which is based on a viscoplastic unified McDowell formulation, coupled with porous damage equations. The mechanical law can describe precisely the viscoplastic damage phenomenon of solder subjected to high thermal cycling and to optimize the thermo-mechanical modeling for advanced package development.
Keywords :
aluminium alloys; ceramics; copper; diamond; electronics packaging; eutectic alloys; finite element analysis; gold alloys; power convertors; power electronics; silicon compounds; solders; viscoplasticity; AlSi; AuGe; FE simulation; Si3N4; associated packaging; constitutive behavior law; copper metallized ceramic substrate; diamond based semiconductor; diamond component packaging; diamond die attach solution; elaboration process; electronic quality; eutectic alloy; hazardous substance restriction; junction die; junction substrate; mechanical law; package development; porous damage equation; power capability; power electronic application; power electronic converter; power electronic packaging; single-crystal diamond substrate; solder alloy; system integration; temperature -50 C to 300 C; temperature 356 C; temperature 577 C; thermal cycling; thermomechanical behavior prediction; thermomechanical modeling; user material subroutine; viscoplastic behavior; viscoplastic damage phenomenon; viscoplastic unified McDowell formulation; Cooling; Heating; Load modeling; Metals; Solid modeling; Thermal stability; Three dimensional displays;
Conference_Titel :
Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2012 13th International Conference on
Conference_Location :
Cascais
Print_ISBN :
978-1-4673-1512-8
DOI :
10.1109/ESimE.2012.6191747