DocumentCode :
1953328
Title :
A Novel Approach to Object/Background Segmentation Based on the Probabilistic Graphical Model
Author :
Li, Qiuxu ; Zhao, Jieyu
Author_Institution :
Res. Inst. of Comput. Sci. & Technol., Ningbo Univ., Ningbo, China
fYear :
2009
fDate :
20-23 Sept. 2009
Firstpage :
162
Lastpage :
167
Abstract :
Graph cut as a powerful optimization technique for minimizing MRF (Markov Random Field) energy functions has been successfully applied to image segmentation. In this paper, we adopt an MRF model for object/background segmentation. The theoretical framework is based on maximum a posterior estimation via the graph-cut energy optimization method. Parameters are estimated with a novel parameter estimation algorithm. The novel parameter estimation algorithm is a variant of the expectation maximization (EM) algorithm with prior influence factors. Characteristic features related to the information in color, texture and position are extracted for each pixel. Experimental results demonstrate the effectiveness of our approach.
Keywords :
Markov processes; expectation-maximisation algorithm; feature extraction; image colour analysis; image segmentation; image texture; optimisation; parameter estimation; MRF model; Markov random field; background segmentation; characteristic feature extraction; color information; expectation maximization algorithm; graph cut energy optimization; image segmentation; influence factors; object segmentation; parameter estimation algorithm; position information; probabilistic graphical model; texture information; Color; Computer graphics; Computer science; Graphical models; Image segmentation; Markov random fields; Object segmentation; Parameter estimation; Partitioning algorithms; Pixel; Graph cut; MRF; energy optimization; object/background segmentation; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image and Graphics, 2009. ICIG '09. Fifth International Conference on
Conference_Location :
Xi´an, Shanxi
Print_ISBN :
978-1-4244-5237-8
Type :
conf
DOI :
10.1109/ICIG.2009.14
Filename :
5437802
Link To Document :
بازگشت