DocumentCode :
1956872
Title :
Sensitivity evaluation of HOS parameters by data fusion from HD-sEMG grid
Author :
Al Harrach, Mariam ; Ayachi, F.S. ; Boudaoud, Sofiane ; Laforet, Jeremy ; Marin, Frederic
Author_Institution :
Biomech. & Bio-Eng., Univ. of Technol. of Compiegne (UTC), Compiegne, France
fYear :
2013
fDate :
11-13 Sept. 2013
Firstpage :
97
Lastpage :
100
Abstract :
The objective of this paper is to study the sensitivity of High Order statistics (HOS) parameters (the kurtosis and the Skewness) toward variation of the force intensity by applying different methods of data fusion. The data fusion allows us to obtain a single EMG signal or a single HOS parameter set from a 64 signals captured by an 8×8 High Density Surface EMG (HD-sEMG) grid. For this purpose, we started by calculating the HOS parameters (Kurtosis and Skewness) for the 64 monopolar signals for each one of three force intensities: 20%, 50% and 80% MVC. Then we applied two different data fusion procedures: Laplacian matrix coupled to Principle Component Analysis (PCA), and Laplacian matrix coupled with HOS parameter averaging. According to the obtained results, we noticed an important spatial sensitivity of the HOS parameters according to force variation for the monopolar grid. After data fusion, both studied techniques gave interesting results with better sensitivity for the Laplacian matrix combined to HOS parameter averaging method. Further studies are envisaged to assess the HOS parameter sensitivity to varying force and muscle anatomies.
Keywords :
Laplace equations; biomechanics; electromyography; force; medical signal processing; principal component analysis; sensor fusion; HD-sEMG grid-captured signal; HOS kurtosis calculation; HOS parameter averaging method; HOS parameter calculation; HOS parameter sensitivity assessment; HOS parameter sensitivity evaluation; HOS parameter spatial sensitivity; HOS parameter-coupled Laplacian matrix; HOS skewness calculation; High Density Surface EMG grid-captured signal; PCA-coupled Laplacian matrix; Principal Component Analysis-coupled Laplacian matrix; data fusion method application; data fusion procedure; data fusion-acquired EMG signal; data fusion-acquired electromyogram signal; force intensity monopolar signal; force intensity variation; high order statistics kurtosis calculation; high order statistics parameter averaging method; high order statistics parameter sensitivity assessment; high order statistics parameter sensitivity evaluation; high order statistics parameter spatial sensitivity; high order statistics parameter-coupled Laplacian matrix; high order statistics skewness calculation; monopolar grid force variation; single EMG signal acquisition; single HOS parameter set; single electromyogram signal acquisition; single high order statistics parameter set; Data integration; Electrodes; Force; Laplace equations; Muscles; Principal component analysis; Sensitivity; Data Fusion; HD-sEMG; High Order Statistics; Laplacian matrix; muscle force; principal component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advances in Biomedical Engineering (ICABME), 2013 2nd International Conference on
Conference_Location :
Tripoli
Print_ISBN :
978-1-4799-0249-1
Type :
conf
DOI :
10.1109/ICABME.2013.6648856
Filename :
6648856
Link To Document :
بازگشت