DocumentCode :
1958932
Title :
Decomposition of Decidable First-Order Logics over Integers and Reals
Author :
Bouchy, Florent ; Finkel, Alain ; Leroux, Jerome
Author_Institution :
ENS Cachan, CNRS, Cachan
fYear :
2008
fDate :
16-18 June 2008
Firstpage :
147
Lastpage :
155
Abstract :
We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposition splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation.
Keywords :
decidability; set theory; decidable first-order logic decomposition; infinite set; integer; real-valued vector; Additives; Arithmetic; Automata; Automatic testing; Clocks; Counting circuits; Libraries; Logic testing; Polynomials; System testing; DBM; First-order logics; Presburger; Symbolic representations; Timed automata;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Temporal Representation and Reasoning, 2008. TIME '08. 15th International Symposium on
Conference_Location :
Montreal, QC
ISSN :
1530-1311
Print_ISBN :
978-0-7695-3181-6
Type :
conf
DOI :
10.1109/TIME.2008.22
Filename :
4553303
Link To Document :
بازگشت