Title :
Separation and extraction of energy variants from human motion using temporal minimization
Author :
Etemad, S. Ali ; Arya, Ali
Author_Institution :
Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada
Abstract :
This paper presents a new approach based on temporal minimization for separation and extraction of high/low-energy variants embedded in human motion. A data set of over 6500 frames is used for training the proposed algorithm. Spatiotemporal cubic splines are employed for approximating the trajectories associated with walking sequences. The optimal numbers of control points required for synthesizing the neutral movements are calculated. We illustrate that by minimizing an error value with respect to the training data set and reconstructing the trajectories, the low and high-energy variants can be separated from the main gait and hence extracted.
Keywords :
computational geometry; computer graphics; image motion analysis; splines (mathematics); computer graphics; data set training; energy variant extraction; energy variant separation; human motion; neutral movements; spatiotemporal cubic splines; temporal minimization; trajectory reconstruction; walking sequences; Humans; Legged locomotion; Mathematical model; Spatiotemporal phenomena; Spline; Training; Trajectory; cubic splines; energy variants; human motion; motion capture; temporal minimization;
Conference_Titel :
Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), 2011 IEEE International Conference on
Conference_Location :
Ottawa, ON
Print_ISBN :
978-1-61284-888-4
DOI :
10.1109/VECIMS.2011.6053840