DocumentCode :
1959714
Title :
An enhanced Mean-Shift and LBP-based face tracking method
Author :
Pouladzadeh, Parisa ; Semsarzadeh, Mehdi ; Hariri, Behnoosh ; Shirmohammadi, Shervin
Author_Institution :
Sch. of Inf. Technol. & Eng., Univ. of Ottawa, Ottawa, ON, Canada
fYear :
2011
fDate :
19-21 Sept. 2011
Firstpage :
1
Lastpage :
4
Abstract :
Face tracking is widely used in many applications. Mean-Shift method is one of the most popular face detection algorithms. In this article, we propose an enhanced version of Mean-Shift face tracking using Local Binary Pattern (LBP) histogram. Simulation results demonstrate that the proposed joint method outperforms both Mean-Shift and LBP histogram methods.
Keywords :
face recognition; image classification; object detection; object tracking; LBP-based face tracking method; face detection algorithms; local binary pattern histogram; mean-shift face tracking method; motion detection; object tracking; Algorithm design and analysis; Face; Histograms; Joints; Kernel; Simulation; Tracking; LBP; Mean-Shift; augmented and virtualized reality; face tracking; human-computer interaction; object modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), 2011 IEEE International Conference on
Conference_Location :
Ottawa, ON
ISSN :
1944-9429
Print_ISBN :
978-1-61284-888-4
Type :
conf
DOI :
10.1109/VECIMS.2011.6053844
Filename :
6053844
Link To Document :
بازگشت