DocumentCode :
1960669
Title :
On maneuvering target tracking via the PMHT
Author :
Logothetis, Andrew ; Krishnamurthy, Vikram ; Holst, Jan
Author_Institution :
Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia
Volume :
5
fYear :
1997
fDate :
10-12 Dec 1997
Firstpage :
5024
Abstract :
This paper presents an iterative off-line optimal state estimation algorithm, which yields the maximum a posteriori (MAP) state trajectory estimate of the state sequence of a target maneuvering in clutter. The problem is formulated as a jump Markov linear system and the expectation maximization algorithm is used to compute the state sequence estimate. The proposed algorithm optimally combines a hidden Markov model and a Kalman smoother to yield the MAP target state sequence estimate. The algorithm proposed uses probabilistic multi-hypothesis tracking (PMHT) techniques for tracking a single maneuvering target in clutter. Previous applications of the PMHT technique have addressed the problem of tracking multiple non-maneuvering targets. These techniques are extended to address the problem of optimal (in a MAP sense) tracking of a maneuvering target in clutter
Keywords :
Kalman filters; clutter; hidden Markov models; iterative methods; linear systems; state estimation; stochastic systems; target tracking; Kalman filter; clutter; expectation maximization algorithm; hidden Markov model; iterative method; jump Markov linear system; maneuvering target tracking; probabilistic multiple hypothesis tracking; state estimation; state sequence; Computational efficiency; Hidden Markov models; Iterative algorithms; Kalman filters; Linear systems; State estimation; Statistics; Target tracking; Trajectory; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
Conference_Location :
San Diego, CA
ISSN :
0191-2216
Print_ISBN :
0-7803-4187-2
Type :
conf
DOI :
10.1109/CDC.1997.649857
Filename :
649857
Link To Document :
بازگشت