DocumentCode
1963128
Title
Estimating real world privacy risk scenarios
Author
Vukovic, Marin ; Skocir, Pavle ; Katusic, Damjan ; Jevtic, Dragan ; Trutin, Daniela ; Delonga, Luka
Author_Institution
Fac. of Electr. Eng. & Comput., Univ. of Zagreb, Zagreb, Croatia
fYear
2015
fDate
13-15 July 2015
Firstpage
1
Lastpage
7
Abstract
User privacy is becoming an issue on the Internet due to common data breaches and various security threats. Services tend to require private user data in order to provide more personalized content and users are typically unaware of potential risks to their privacy. This paper continues our work on the proposed user privacy risk calculator based on a feedforward neural network. Along with risk estimation, we provide the users with real world example scenarios that depict privacy threats according to selected input parameters. In this paper, we present a model for selecting the most probable real world scenario, presented as a comic, and thus avoid overwhelming the user with lots of information that he/she may find confusing. Most probable scenario estimations are performed by artificial neural network that is trained with real world scenarios and estimated probabilities from real world occurrences. Additionally, we group real world scenarios into categories that are presented to the user as further reading regarding privacy risks.
Keywords
data privacy; feedforward neural nets; learning (artificial intelligence); probability; artificial neural network training; data breach; feed-forward neural network; input parameter selection; personalized content; privacy risks; privacy threats; private user data; probabilities; real-world privacy risk scenario estimation; risk estimation; security threats; user privacy; user privacy risk calculator; Calculators; Electronic mail; Estimation; Internet; Law; Privacy;
fLanguage
English
Publisher
ieee
Conference_Titel
Telecommunications (ConTEL), 2015 13th International Conference on
Conference_Location
Graz
Type
conf
DOI
10.1109/ConTEL.2015.7231214
Filename
7231214
Link To Document