DocumentCode :
1967965
Title :
Tuning statistical machine translation parameters using perplexity
Author :
Nabhan, Ahmed Ragab ; Rafea, Ahmed
Author_Institution :
Dept. of Math., Cairo Univ., Egypt
fYear :
2005
fDate :
15-17 Aug. 2005
Firstpage :
338
Lastpage :
343
Abstract :
Statistical machine translation (SMT) involves many tasks including modeling, training, decoding, and evaluation. In this work, we present a methodology for optimizing the training process to get better translation quality using the well known GIZA ++ SMT toolkit. The methodology is based on adjusting the parameters of GIZA ++ that affect the generation of the translation model. When applying the methodology, an average improvement of 7% has been achieved in the translation quality.
Keywords :
language translation; statistical analysis; GIZA++ SMT toolkit; tuning statistical machine translation; Computer science; Data mining; Decoding; Mathematics; Measurement; Optimization methods; Parameter estimation; Speech recognition; Surface-mount technology; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Reuse and Integration, Conf, 2005. IRI -2005 IEEE International Conference on.
Print_ISBN :
0-7803-9093-8
Type :
conf
DOI :
10.1109/IRI-05.2005.1506496
Filename :
1506496
Link To Document :
بازگشت