DocumentCode :
1968283
Title :
Trapping set structure of LDPC codes on finite geometries
Author :
Qiuju Diao ; Ying Yu Tai ; Shu Lin ; Abdel-Ghaffar, Khaled
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California, Davis, Davis, CA, USA
fYear :
2013
fDate :
10-15 Feb. 2013
Firstpage :
1
Lastpage :
8
Abstract :
The trapping set structure of LDPC codes constructed based on finite geometries, called finite geometry (FG) LDPC codes, is analyzed using a geometric approach. In this approach, trapping sets in the Tanner graph of an FG-LDPC code are represented by subgeometries of the geometry based on which the code is constructed. Using this geometrical representation, bounds and configurations of trapping sets of an FG-LDPC code can be derived and analyzed.
Keywords :
geometric codes; graph theory; parity check codes; FG LDPC codes; Tanner graph; finite geometries; geometrical representation; subgeometries; trapping set structure; AWGN channels; Charge carrier processes; Decoding; Geometry; Hafnium; Iterative decoding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory and Applications Workshop (ITA), 2013
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4673-4648-1
Type :
conf
DOI :
10.1109/ITA.2013.6502951
Filename :
6502951
Link To Document :
بازگشت