DocumentCode :
1969183
Title :
The complex stability radius of discrete-time systems and symplectic pencils
Author :
Hinrichsen, D. ; Son, N.K.
Author_Institution :
Inst. fuer Dynamische Syst., Bremen Univ., West Germany
fYear :
1989
fDate :
13-15 Dec 1989
Firstpage :
2265
Abstract :
The authors introduce and analyze robustness measures for the stability of discrete-time systems x(t+1)=Ax( t) under parameter perturbations of the form AA+BDC where B,C are given matrices. In particular, the authors characterize the complex stability radius of the perturbed system x(t+1)=(A+BDC) x(t), D unknown, via an associated symplectic pencil, and present an algorithm for the computation of that radius
Keywords :
discrete time systems; stability; complex stability radius; discrete-time systems; parameter perturbations; robustness measures; symplectic pencils; Closed loop systems; Controllability; Difference equations; Mathematics; Observability; Output feedback; Robust stability; Robustness; Stability analysis; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1989., Proceedings of the 28th IEEE Conference on
Conference_Location :
Tampa, FL
Type :
conf
DOI :
10.1109/CDC.1989.70573
Filename :
70573
Link To Document :
بازگشت