DocumentCode :
1969684
Title :
Correcting beliefs in the mean-field and Bethe approximations using linear response
Author :
Raymond, Jack ; Ricci-Tersenghi, Federico
Author_Institution :
Dipt. di Fis., Univ. La Sapienza, Rome, Italy
fYear :
2013
fDate :
9-13 June 2013
Firstpage :
1429
Lastpage :
1433
Abstract :
Approximating marginals of a graphical model is one of the fundamental problems in the theory of networks. In a recent paper a method was shown to construct a variational free energy such that the linear response estimates, and maximum entropy estimates (for beliefs) are in agreement, with implications for direct and inverse Ising problems [1]. In this paper we demonstrate an extension of that method, incorporating new information from the response matrix, and we recover the adaptive-TAP equations as the first order approximation [2]. The method is flexible with respect to applications of the cluster variational method, special cases of this method include Naive Mean Field (NMF) and Bethe. We demonstrate that the new framework improves estimation of marginals by orders of magnitude over standard implementations in the weak coupling limit. Beyond the weakly coupled regime we show there is an improvement in a model where the NMF and Bethe approximations are known to be poor for reasons of frustration and short loops.
Keywords :
free energy; inverse problems; matrix algebra; maximum entropy methods; network theory (graphs); variational techniques; Bethe approximation; NMF; Naive Mean Field; adaptive-TAP equation; cluster variational method; direct Ising problem; graphical model; inverse Ising problem; linear response estimation; maximum entropy estimation; response matrix; variational free energy; Approximation methods; Correlation; Couplings; Entropy; Equations; Mathematical model; Standards;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications Workshops (ICC), 2013 IEEE International Conference on
Conference_Location :
Budapest
Type :
conf
DOI :
10.1109/ICCW.2013.6649462
Filename :
6649462
Link To Document :
بازگشت