Title :
An optimal wavelet for raw SAR data compression
Author :
Boustani, A. El ; Brunham, K. ; Kinsner, W.
Author_Institution :
Dept. of Electr. & Comput. Eng., Manitoba Univ., Winnipeg, Man., Canada
Abstract :
Synthetic aperture radar (SAR) is a sophisticated remote sensing tool that is capable of providing high resolution images from a moving platform. Due to the very poor correlation and high entropy of SAR raw data, redundancy reduction techniques have not proven successful and a lossy compression is necessary. In a previous work, we have presented a compression of the raw SAR signal using five kinds of wavelets. The quality reconstruction was very good, however, due to noise like characteristics of the raw SAR signal, none of the standard wavelets was very efficient in compacting energy in the transform domain. In this paper, we propose to determine an optimal 2-D wavelet which is learned directly from the raw SAR data. The optimality criterion in the learning processes is redundancy minimization in the transform domain. Experiments show that this optimal wavelet performs better than the standard wavelets.
Keywords :
data compression; image coding; image reconstruction; image resolution; minimisation; remote sensing by radar; synthetic aperture radar; data correlation; data entropy; energy compaction; high resolution image; image data; learning process; optimal 2-D wavelet; quality reconstruction; raw SAR data compression; redundancy minimization; sophisticated remote sensing tool; synthetic aperture radar; transform domain; Data compression; Entropy; Image coding; Image reconstruction; Image resolution; Remote sensing; Signal resolution; Synthetic aperture radar; Wavelet domain; Wavelet transforms;
Conference_Titel :
Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on
Print_ISBN :
0-7803-7781-8
DOI :
10.1109/CCECE.2003.1226324