DocumentCode :
1975747
Title :
A neuro-fuzzy based approach for output tracking of transverse flux machines
Author :
Babazadeh, A. ; Karimi, H.R. ; Moshiri, B.
Author_Institution :
Inst. of Electr. Drives, Power Electron. & Devices, Bremen Univ.
fYear :
2005
fDate :
28-31 Aug. 2005
Firstpage :
272
Lastpage :
276
Abstract :
This paper describes a design for adaptive control of transverse flux permanent magnet machines as nonlinear systems with unknown nonlinearities by utilizing Takagi-Sugeno-Kang type neuro-fuzzy networks. The technique of feedback linearization and Hinfin control are used to design the adaptive control law for compensating the unknown nonlinear parts, such the effect of cogging torque, as a disturbance on the rotor angle and angular velocity tracking performances. Finally, the capability of the proposed method is shown by the simulation results
Keywords :
adaptive control; control system synthesis; feedback; fuzzy neural nets; machine control; neurocontrollers; nonlinear systems; permanent magnet machines; tracking; Hinfin control; Takagi-Sugeno-Kang type neuro-fuzzy network; adaptive control; angular velocity tracking; cogging torque; feedback linearization; neuro-fuzzy based approach; nonlinear system; output tracking; rotor angle tracking; transverse flux permanent magnet machine; Adaptive control; Angular velocity control; Forging; Fuzzy neural networks; Linear feedback control systems; Neurofeedback; Nonlinear systems; Permanent magnet machines; Takagi-Sugeno-Kang model; Torque control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on
Conference_Location :
Toronto, Ont.
Print_ISBN :
0-7803-9354-6
Type :
conf
DOI :
10.1109/CCA.2005.1507137
Filename :
1507137
Link To Document :
بازگشت