DocumentCode :
1980384
Title :
Quadriceps muscle models using fuzzy logic and ANFIS
Author :
Salleh, S.M. ; Jailani, R. ; Tokhi, M.O.
Author_Institution :
Neuromuscular Rehabilitation Res. Group, Univ. Teknol. MARA Malaysia, Shah Alam, Malaysia
fYear :
2013
fDate :
19-20 Aug. 2013
Firstpage :
406
Lastpage :
410
Abstract :
This paper presents a development of quadriceps muscle models using ANFIS and Fuzzy Logic based on Functional Electrical Stimulation (FES). The models inputs parameter consists of stimulation frequency, pulse width, and sampling time are used to predict quadriceps output torque. The muscle models developed are then validate with the clinical data to evaluate the accuracy of the torque output predicted with the identified parameters. In this study, Fuzzy Logic muscle model gives better performance representing quadriceps muscle model.
Keywords :
fuzzy logic; fuzzy neural nets; inference mechanisms; medical computing; muscle; ANFIS; FES; functional electrical stimulation; fuzzy logic; pulse width; quadriceps muscle models; quadriceps output torque prediction; sampling time; stimulation frequency; Biological system modeling; Data models; Force; Fuzzy logic; Mathematical model; Muscles; Neuromuscular stimulation; ANFIS; Functional Electrical Stimulation (FES); Fuzzy Logic; Quadriceps Muscle Model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
System Engineering and Technology (ICSET), 2013 IEEE 3rd International Conference on
Conference_Location :
Shah Alam
Print_ISBN :
978-1-4799-1028-1
Type :
conf
DOI :
10.1109/ICSEngT.2013.6650209
Filename :
6650209
Link To Document :
بازگشت