DocumentCode :
1981398
Title :
Data-based model refinement for linear and hammerstein systems using subspace identification and adaptive disturbance rejection
Author :
Palanthandalam-Madapusi, Harish J. ; Renk, Erin L. ; Bernstein, Dennis S.
Author_Institution :
Dept. of Aerosp. Eng., Michigan Univ., Ann Arbor, MI
fYear :
2005
fDate :
28-31 Aug. 2005
Firstpage :
1630
Lastpage :
1635
Abstract :
First principle models and empirical models are necessarily approximate. In this paper we develop two empirical approaches that use a delta model to modify an initial model by means of cascade, parallel or feedback augmentation. A sub-space based nonlinear identification algorithm and an adaptive disturbance rejection algorithm are both used to construct the delta model. Three classes of errors in the initial model, i.e. unmodeled dynamics, parametric errors and initial condition errors are considered. Some illustrative examples are presented
Keywords :
adaptive systems; errors; feedback; identification; linear systems; nonlinear systems; Hammerstein system; adaptive disturbance rejection algorithm; cascade augmentation; data-based model; delta model; empirical model; feedback augmentation; initial condition error; linear system; parallel augmentation; parametric error; principle model; sub-space based nonlinear identification algorithm; subspace identification; unmodeled dynamics; Aerodynamics; Analytical models; Context modeling; Error correction; Feedback; Large-scale systems; Mathematical model; State estimation; State-space methods; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on
Conference_Location :
Toronto, Ont.
Print_ISBN :
0-7803-9354-6
Type :
conf
DOI :
10.1109/CCA.2005.1507366
Filename :
1507366
Link To Document :
بازگشت