Title :
Extracting hidden visual information from mammography images using conjugate image enhancement software
Author :
Yan, Zhiwen ; Zhang, Yan ; Liu, Bing ; Zheng, Jeffrey ; Lu, Lian ; Xie, Yingfu ; Liang, Zhi ; Li, Jing
Author_Institution :
Sch. of Software, Yunnan Univ., Kunming, China
fDate :
27 June-3 July 2005
Abstract :
Most early breast cancers can be diagnosed by detecting calcification clusters in mammography X-ray images. The clusters appear as groups of small, bright particles with arbitrary shapes. Detecting micro-calcifications is difficult because they are embedded in a non-homogeneous background. Many missed radiology diagnoses can be attributed to human factors such as the use of subjective criteria or variable criteria in decision making, distraction by other image features, the large number of images to be inspected, or just simple oversight. Consequently there are very good reasons for pursuing reliable and effective methods for micro-calcifications detection. While many methods for micro-calcification segmentation have been developed in the past ten years, they either require manual threshold adjustments or depend on local statistics to compute those thresholds. This paper presents a new fully automated, parameter-free, and local statistics independent, algorithm for micro-calcification segmentation in mammography X-ray images.
Keywords :
X-ray imaging; cancer; feature extraction; image enhancement; mammography; medical image processing; radiology; breast cancer; conjugate image enhancement software; feature extraction; hidden visual information extraction; mammography X-ray images; microcalcification detection; microcalcification segmentation; Breast cancer; Cancer detection; Data mining; Image enhancement; Image segmentation; Mammography; Statistics; X-ray detection; X-ray detectors; X-ray imaging;
Conference_Titel :
Information Acquisition, 2005 IEEE International Conference on
Print_ISBN :
0-7803-9303-1
DOI :
10.1109/ICIA.2005.1635092