DocumentCode :
1984175
Title :
Study of Universal Constants of Bifurcation in a Chaotic Sine Map
Author :
Qian Zhang ; Yong Xiang ; Zhenghang Fan ; Chuang Bi
Author_Institution :
Sch. of Energy Sci. & Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
Volume :
2
fYear :
2013
fDate :
28-29 Oct. 2013
Firstpage :
177
Lastpage :
180
Abstract :
The symmetry breaking bifurcation of a sine map is discussed when the control parameter in the sine map is chosen as a bifurcation parameter. Based on the sine map, the bifurcation points can be derived by the iterative map. Then, the stability of the system is enhanced by employing a cubic and a linear chaotic controller to exactly control the locations of the bifurcation points. Moreover, the universal constants of the chaotic system have been obtained by numerical simulation. The validity of the theoretical analysis is proved by the diagrams of bifurcation and Lyapunov exponent.
Keywords :
bifurcation; chaos; iterative methods; linear systems; nonlinear control systems; stability; bifurcation parameter; bifurcation points; chaotic sine map; control parameter; cubic controller; iterative map; linear chaotic controller; numerical simulation; symmetry breaking bifurcation; system stability; universal constants; Bifurcation; Chaos; Control systems; Mathematical model; Numerical stability; Stability analysis; chaos control; sine map; symmetry breaking bifurcation; universal constant;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Design (ISCID), 2013 Sixth International Symposium on
Conference_Location :
Hangzhou
Type :
conf
DOI :
10.1109/ISCID.2013.158
Filename :
6804857
Link To Document :
بازگشت