DocumentCode :
1984728
Title :
A pseudo-online Brain-Computer Interface with automatic choice for EEG channel and frequency
Author :
Benevides, Alessandro B. ; Bastos, Teodiano F. ; Filho, Mário Sarcinelli
Author_Institution :
Dept. de Eng. Eletr., Univ. Fed. do Espirito Santo, Vitoria, Brazil
fYear :
2011
fDate :
15-18 May 2011
Firstpage :
81
Lastpage :
84
Abstract :
This paper presents the classification of three mental tasks, using the electroencephalographic signal and simulating a real-time process, that is, the pseudo-online technique. Linear Discriminant Analysis is used to recognize the mental tasks, and the feature extraction uses the Power Spectral Density. The choice of EEG channel and frequency uses the Kullback-Leibler symmetric divergence and a reclassification model is proposed to stabilize the classifier. Finally, it is expected that the proposed method can be implemented in a Brain-Computer Interface associated with a robotic wheelchair.
Keywords :
brain-computer interfaces; electroencephalography; feature extraction; handicapped aids; medical robotics; medical signal processing; signal classification; EEG channel; EEG frequency; Kullback-Leibler symmetric divergence; electroencephalographic signal; feature extraction; linear discriminant analysis; mental task classification; mental task recognition; power spectral density; pseudo-online brain-computer interface; reclassification model; robotic wheelchair; Brain computer interfaces; Covariance matrix; Electroencephalography; Histograms; Mobile robots; Wheelchairs;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems (ISCAS), 2011 IEEE International Symposium on
Conference_Location :
Rio de Janeiro
ISSN :
0271-4302
Print_ISBN :
978-1-4244-9473-6
Electronic_ISBN :
0271-4302
Type :
conf
DOI :
10.1109/ISCAS.2011.5937506
Filename :
5937506
Link To Document :
بازگشت