Title :
Failure prognosis of DC starter motors using hidden Markov models
Author :
Zaidi, Syed Sajjad H ; Aviyente, Selin ; Salman, Mutasim ; Shin, Kwang-Keun ; Strangas, Elias G.
Author_Institution :
Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA
fDate :
Aug. 31 20096-Sept. 3 2009
Abstract :
This paper deals with the prognosis of gear faults in DC machines using time frequency distribution methods. The proposed method presents future state prediction of the machine faults using Hidden Markov models. Different methods for estimating the parameters of hidden Markov model with limited data are discussed. The proposed method uses Matching Pursuit decomposition and projections of the training data on linear discriminant planes for estimation of model parameters. Experimental results are presented to illustrate the method.
Keywords :
DC motors; fault diagnosis; hidden Markov models; machine testing; DC machines; DC starter motors failure prognosis; gear faults prognosis; hidden Markov models; machine faults; matching pursuit decomposition; time frequency distribution methods; DC motors; Hidden Markov models; Linear discriminant analysis; Pattern analysis; Pattern recognition; Scattering; Smoothing methods; State estimation; Stochastic processes; Time frequency analysis; Hidden Markov Models; Linear Discriminant Classifier; Multiple Discriminant Analysis; Pattern Recognition; Prognosis; Time Frequency Analysis;
Conference_Titel :
Diagnostics for Electric Machines, Power Electronics and Drives, 2009. SDEMPED 2009. IEEE International Symposium on
Conference_Location :
Cargese
Print_ISBN :
978-1-4244-3441-1
DOI :
10.1109/DEMPED.2009.5292778