Title :
Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering
Author :
Jiasheng Song ; Guoqing Hu
Author_Institution :
Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China
Abstract :
Visual tracking is often confronted with some impediments, such as the target´s sudden acceleration and structural deformation, occlusion, lighting changes and so on. To overcome these problems, a tracking approach is proposed, which is based on the unscented Kalman filter (UKF) and the multi-feature fusion. First, the mean and covariance of the target state variable is predicted based on a nearly constant velocity system. And the target´s hue histogram and edge orientation histogram are extracted at the corresponding position. Second, the measured position is calculated by Mean-shift algorithm based on the fusion of multi-feature. Finally, according to the measured position the UKF updates the mean and covariance of the state variable and reports the current position of the target. The experiments in 2 different scenes showed that the tracking method could efficiently track the fast moving objects and adapt to the lighting changes, rotation, and partial occlusion and deform. These demonstrated that the method have more tracking accuracy and adaptive robustness.
Keywords :
Kalman filters; covariance analysis; feature extraction; image colour analysis; image fusion; nonlinear filters; object tracking; UKF; adaptive unscented Kalman filtering; deform; edge orientation histogram; histogram extraction; lighting changes; mean-shift algorithm; multifeature fusion; multifeature visual tracking; nearly constant velocity system; object rotation; object tracking; partial occlusion; target hue histogram; target state variable covariance; target state variable mean; Equations; Feature extraction; Histograms; Kalman filters; Mathematical model; Position measurement; Target tracking; edge orientation histogram; hue histogram; object tracking; state estimation; unscented Kalman filter;
Conference_Titel :
Computational Intelligence and Design (ISCID), 2013 Sixth International Symposium on
Conference_Location :
Hangzhou
DOI :
10.1109/ISCID.2013.56