Title :
Wavelet texture extraction and image classification of hyperspectral data based on Support Vector Machine
Author :
Hwang, Jin-Tsong
Author_Institution :
Dept. of Real Estate & Built Environ., Nat. Taipei Univ., Taipei, Taiwan
Abstract :
The support vector machine (SVM) was a new machine learning technique developed on the basis of statistical learning theory. It is the most successful realization of statistical learning theory. To testify the validity of SVM, this study chose the data set of hyperspectral images sensed by AVIRIS, with the band selected by Bhattacharya distance. And it added different scales of texture information as the origin information of image for classification. The main difficulty of texture recognition was the lack of effective tools to characterize different scales of textures. To improve the problem, the wavelet co-occurrence parameters, mean, homogeneity, and standard deviation of different level discrete wavelet transform images were used as texture features. In this paper, the texture features combined with PCA band of image were adopted as the characteristic vector of training samples for SVM, and decision tree classification. Finally, traditional classification schemes of maximum likelihood were comparatively studied. The effectiveness of the classification including texture measures was also analyzed. The experimental results showed that SVM method gave the highest correct classification rate within all of these three methodologies while maximum likelihood gave the lowest rate. Adding texture feature information by the proposed approach to images improved classification accuracy for all of SVM, decision tree, and maximum likelihood classification.
Keywords :
decision trees; discrete wavelet transforms; feature extraction; geophysical signal processing; image classification; image texture; maximum likelihood estimation; principal component analysis; remote sensing; support vector machines; Bhattacharya distance; PCA band; decision tree classification; discrete wavelet transform images; hyperspectral data; hyperspectral images; image classification; maximum likelihood classification; principal component analysis; statistical learning theory; support vector machine; texture recognition; wavelet co-occurrence parameters; wavelet texture extraction; Classification tree analysis; Data mining; Decision trees; Discrete wavelet transforms; Hyperspectral imaging; Hyperspectral sensors; Image classification; Statistical learning; Support vector machine classification; Support vector machines; classification; hyperspectural imagery; svm;
Conference_Titel :
Geoinformatics, 2009 17th International Conference on
Conference_Location :
Fairfax, VA
Print_ISBN :
978-1-4244-4562-2
Electronic_ISBN :
978-1-4244-4563-9
DOI :
10.1109/GEOINFORMATICS.2009.5292863