DocumentCode :
1987747
Title :
A novel method for computing the partition function of Markov random field images using Monte Carlo simulations
Author :
Potamianos, Gerasimos ; Goutsias, John
Author_Institution :
Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
fYear :
1991
fDate :
14-17 Apr 1991
Firstpage :
2325
Abstract :
The authors present a new Monte Carlo simulation technique for the estimation of the partition function of a general Markov random field (MRF), which results in unbiased, consistent and asymptotically efficient estimates. This technique gives extremely accurate results, as demonstrated by simulations. Use of more efficient algorithms can boost the performance and accuracy of the method, and yield more reliable estimates
Keywords :
Markov processes; Monte Carlo methods; picture processing; Markov random field images; Monte Carlo simulations; partition function; Closed-form solution; Equations; Image analysis; Laboratories; Lattices; Markov random fields; Maximum likelihood estimation; Monte Carlo methods; Probability distribution; Samarium;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on
Conference_Location :
Toronto, Ont.
ISSN :
1520-6149
Print_ISBN :
0-7803-0003-3
Type :
conf
DOI :
10.1109/ICASSP.1991.150772
Filename :
150772
Link To Document :
بازگشت