DocumentCode :
1988214
Title :
Machine parameter estimation as a pattern recognition problem
Author :
Calvo, M. ; Malik, O.P.
Author_Institution :
Nortel Networks, Calgary, Alta., Canada
Volume :
3
fYear :
2001
fDate :
15-19 July 2001
Firstpage :
1387
Abstract :
On-line techniques for parameter estimation face practical restrictions and innumerable concerns about the possibility of undesirable effects. To overcome this barrier, an on-line parameter estimation technique that is both conceptually clean and highly nonintrusive is presented in this paper. By reformulating the parameter estimation problem as a pattern recognition problem, a practical solution has been achieved by using the ability of neural networks to recognize patterns from on-line data. Studies on a salient-pole micro-alternator and a turbo-alternator illustrate the effectiveness of the proposed technique.
Keywords :
alternators; electric machine analysis computing; neural net architecture; parameter estimation; pattern recognition; machine parameter estimation; neural networks; nonintrusive parameter estimation; on-line data; on-line parameter estimation; pattern recognition problem; salient-pole micro-alternator; synchronous machine; turbo-alternator; Frequency measurement; Frequency response; Manufacturing; Neural networks; Parameter estimation; Pattern recognition; Performance evaluation; Synchronous machines; System identification; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power Engineering Society Summer Meeting, 2001
Conference_Location :
Vancouver, BC, Canada
Print_ISBN :
0-7803-7173-9
Type :
conf
DOI :
10.1109/PESS.2001.970279
Filename :
970279
Link To Document :
بازگشت