DocumentCode :
19885
Title :
Mitigation of Low-Frequency Current Ripple in Fuel-Cell Inverter Systems Through Waveform Control
Author :
Zhu, Guo-Rong ; Tan, Siew-Chong ; Chen, Yu ; Tse, Chi K.
Author_Institution :
Sch. of Autom., Wuhan Univ. of Technol., Wuhan, China
Volume :
28
Issue :
2
fYear :
2013
fDate :
Feb. 2013
Firstpage :
779
Lastpage :
792
Abstract :
Fuel-cell power systems comprising single-phase dc/ac inverters draw low-frequency ac ripple currents at twice the output frequency from the fuel cell. Such a 100/120 Hz ripple current may create instability in the fuel-cell system, lower its efficiency, and shorten the lifetime of a fuel cell stack. This paper presents a waveform control method that can mitigate such a low-frequency ripple current being drawn from the fuel cell while the fuel-cell system delivers ac power to the load through a differential inverter. This is possible because with the proposed solution, the pulsation component (cause of ac ripple current) of the output ac power will be supplied mainly by the two output capacitors of the differential inverter while the average dc output power is supplied by the fuel cell. Theoretical analysis, simulation, and experimental results are provided to explain the operation and showcase the performance of the approach. Results validate that the proposed solution can achieve significant mitigation of the current ripple as well as high-quality output voltage without extra hardware. Application of the solution is targeted at systems where current ripple mitigation is required, such as for the purpose of eliminating electrolytic capacitor in photovoltaic and LED systems.
Keywords :
fuel cell power plants; invertors; power capacitors; power generation control; LED systems; capacitors; differential inverter; electrolytic capacitor; frequency 100 Hz; frequency 120 Hz; fuel cell stack; fuel-cell inverter systems; fuel-cell power systems; low-frequency AC current ripple mitigation; photovoltaic system; pulsation component; single-phase DC-AC inverters; waveform control method; Capacitors; Educational institutions; Frequency control; Fuel cells; Inverters; Power generation; Voltage control; Active method; decouple; fuel cell; low-frequency current ripple; pulsation power; waveform control;
fLanguage :
English
Journal_Title :
Power Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8993
Type :
jour
DOI :
10.1109/TPEL.2012.2205407
Filename :
6222011
Link To Document :
بازگشت