DocumentCode :
1992580
Title :
An efficient algorithm for the conjugate symmetric sequency-ordered complex Hadamard transform
Author :
Bouguezel, Saad ; Ahmad, M. Omair ; Swamy, M.N.S.
Author_Institution :
Dept. of Electron., Ferhat Abbas Univ., Setif, Algeria
fYear :
2011
fDate :
15-18 May 2011
Firstpage :
1516
Lastpage :
1519
Abstract :
In this paper, an efficient algorithm for fast computation of the conjugate symmetric sequency-ordered complex Hadamard transform (CS-SCHT) of any length that is a power of two is proposed using the Kronecker product. Since the CS-SCHT matrix is factored into a product of sparse matrices, the resulting structure for the algorithm is very attractive for implementation and similar to that of the well-known Walsh-Hadamard transform, except for some multiplications by -1 or (-√(-1)). It is shown that the proposed N-point complex-valued CS-SCHT algorithm requires Nlog2(N) complex additions/subtractions and (N/2-1) multiplications by (-√(-1)).
Keywords :
Hadamard transforms; matrix decomposition; sparse matrices; Kronecker product; Walsh-Hadamard transform; complex Hadamard transform; conjugate symmetric sequency-ordered; sparse matrices; Algorithm design and analysis; Computational complexity; Error correction; Error correction codes; Matrices; Sparse matrices; Transforms; Conjugate symmetric sequency-ordered complex Hadamard transform; Kronecker product; bit-reversal; conjugate symmetric natural-ordered complex Hadamard transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems (ISCAS), 2011 IEEE International Symposium on
Conference_Location :
Rio de Janeiro
ISSN :
0271-4302
Print_ISBN :
978-1-4244-9473-6
Electronic_ISBN :
0271-4302
Type :
conf
DOI :
10.1109/ISCAS.2011.5937863
Filename :
5937863
Link To Document :
بازگشت