• DocumentCode
    1997188
  • Title

    Robust Object Tracking Based on a Novel Feature

  • Author

    Wenlin Zou ; Shumin Fei ; Liuwen Li ; Qi Li ; Hong Lu

  • Author_Institution
    Sch. of Autom., Southeast Univ., Nanjing, China
  • fYear
    2013
  • fDate
    3-4 Dec. 2013
  • Firstpage
    117
  • Lastpage
    121
  • Abstract
    This paper proposes a powerful and robust local descriptor, called color Weber feature(CWF). The CWF descriptor consists of two components: color contrast ratio and color edge orientation. Inspired by Weber´s Law, we propose color contrast ratio which implements hierarchical quantization of salience within an image to simulate the pattern perception of human beings. We embed the proposed CWF representation model in the mean shift tracking framework to perform object tracking. The experiments results demonstrate that CWF is a viable object representation for tracking even in the adverse scenarios such as heavy occlusions, illumination variations and similar objects interference.
  • Keywords
    edge detection; image colour analysis; image representation; object tracking; CWF descriptor; CWF representation model; color Weber feature; color contrast ratio; color edge orientation; hierarchical quantization; mean shift tracking framework; object representation; pattern perception simulation; robust local descriptor; robust object tracking; Computational modeling; Histograms; Image color analysis; Image edge detection; Object tracking; Robustness; Weber local descriptor; color contrast ratio; color edge orientation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Systems (GCIS), 2013 Fourth Global Congress on
  • Conference_Location
    Hong Kong
  • Print_ISBN
    978-1-4799-2885-9
  • Type

    conf

  • DOI
    10.1109/GCIS.2013.25
  • Filename
    6805922