Title :
Poset belief propagation-experimental results
Author :
Harel, Jonathan ; Mceliece, Robert J. ; Palanki, Ravi
Author_Institution :
Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
fDate :
29 June-4 July 2003
Abstract :
Poset belief propagation, or PBP, is a flexible generalization of ordinary belief propagation which can be used to (approximately) solve many probabilistic inference problems. In this paper, we summarize some experimental results comparing the performance of PBP to conventional BP techniques.
Keywords :
generalisation (artificial intelligence); inference mechanisms; belief propagation generalization; poset belief propagation; probabilistic inference problem; Belief propagation; Clustering algorithms; Damping; Inference algorithms; Information processing; Kernel; Performance gain; Probability density function; Sum product algorithm; Systems biology;
Conference_Titel :
Information Theory, 2003. Proceedings. IEEE International Symposium on
Print_ISBN :
0-7803-7728-1
DOI :
10.1109/ISIT.2003.1228191