DocumentCode :
2005801
Title :
Fault-tolerant interval estimation fusion by Dempster-Shafer theory
Author :
Baohua Li ; Zhu, Yunmin ; Rong Li, X.
Author_Institution :
Dept. of Math., Sichuan Univ., Chengdu, China
Volume :
2
fYear :
2002
fDate :
8-11 July 2002
Firstpage :
1605
Abstract :
Fault tolerance is an important issue in network design because sensor networks must work in a dynamic, uncertain situation. In this paper, using Dempster-Shafer theory of evidence, we propose several new fault-tolerant interval integration functions, which give interval estimate fusion outputs and the corresponding belief levels, depending on prior information and practical requirements. Not only do these functions have a smaller output interval than that given by Marzullo function, but they also satisfy the local Lipschitz condition, which makes our algorithm locally stable.
Keywords :
fault tolerance; sensor fusion; target tracking; uncertainty handling; Dempster-Shafer theory of evidence; belief levels; dynamic uncertain situation; fault-tolerant interval estimation fusion; interval estimate fusion outputs; local Lipschitz condition; network design; prior information; sensor networks; Current measurement; Fault tolerance; Fuses; Mathematics; Object detection; Sensor fusion; Target tracking; Time measurement; Weapons; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion, 2002. Proceedings of the Fifth International Conference on
Conference_Location :
Annapolis, MD, USA
Print_ISBN :
0-9721844-1-4
Type :
conf
DOI :
10.1109/ICIF.2002.1021010
Filename :
1021010
Link To Document :
بازگشت