DocumentCode :
2006176
Title :
Approximate Feedback Linearization Control of Nonlinear Systems with Parameter Uncertainties and Input Constraints
Author :
Shan, Wenxiao ; Li, Donghai ; Xue, Yali ; Jiang, Xuezhi ; Chen, Jinli
Author_Institution :
Tsinghua Univ., Beijing
fYear :
2007
fDate :
May 30 2007-June 1 2007
Firstpage :
1716
Lastpage :
1721
Abstract :
In this paper, we investigate the feasibility of an approximate feedback linearization (AFL) approach combined with probabilistic robustness analysis and design (PRAD) for a kind of constrained nonlinear systems with parameter uncertainties. The AFL approach uses an integral observer to observe and compensate the nonlinear dynamics, uncertainties, external disturbances and saturation constraints of a system. The parameters of the controller are searched by genetic algorithms to minimize a probabilistic robustness cost function, which can directly address the designing objectives. To verify the performance and usefulness of the proposed control method, an application to a simple nonlinear control problem is performed.
Keywords :
feedback; genetic algorithms; nonlinear control systems; probability; robust control; uncertain systems; approximate feedback linearization control; genetic algorithm; input constraint; integral observer; nonlinear system; parameter uncertainty; probabilistic robustness analysis; Control systems; Genetic algorithms; Linear approximation; Linear feedback control systems; Nonlinear control systems; Nonlinear dynamical systems; Nonlinear systems; Robustness; Uncertain systems; Uncertainty; Monte-Carlo simulation; approximate feedback linearization; genetic algorithm; probabilistic robustness analysis and design;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Automation, 2007. ICCA 2007. IEEE International Conference on
Conference_Location :
Guangzhou
Print_ISBN :
978-1-4244-0818-4
Electronic_ISBN :
978-1-4244-0818-4
Type :
conf
DOI :
10.1109/ICCA.2007.4376654
Filename :
4376654
Link To Document :
بازگشت