DocumentCode :
2006293
Title :
A Gaussian mixture model for edge-enhanced images with application to sequential edge detection and linking
Author :
Cook, Gregory W. ; Delp, Edward J.
Author_Institution :
Video & Image Process. Lab., Purdue Univ., West Lafayette, IN, USA
Volume :
2
fYear :
1998
fDate :
4-7 Oct 1998
Firstpage :
540
Abstract :
We present a new stochastic model for pixels in an edge-enhanced image. The model is robust because it allows for the possibilities of false and multiple edges, and may be efficiently estimated using a expectation-maximization technique with a minimum description length metric. The direct applicability of the model for the sequential edge linking algorithm is investigated
Keywords :
Gaussian processes; edge detection; image enhancement; optimisation; Gaussian mixture model; edge-enhanced image; edge-enhanced images; expectation-maximization technique; false edges; minimum description length metric; multiple edges; pixels; robust model; sequential edge detection; sequential edge linking algorithm; stochastic model; Application software; Density functional theory; Image edge detection; Image processing; Joining processes; Laboratories; Pixel; Signal to noise ratio; Statistics; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on
Conference_Location :
Chicago, IL
Print_ISBN :
0-8186-8821-1
Type :
conf
DOI :
10.1109/ICIP.1998.723501
Filename :
723501
Link To Document :
بازگشت