Title :
Particle filter based localization of the Nao biped robots
Author :
Hashemi, Ehsan ; Jadid, Maani Ghaffari ; Lashgarian, Majid ; Yaghobi, Mostafa ; Shafiei, R.N.M.
Author_Institution :
Fac. of Ind. & Mech. Eng., Islamic Azad Univ., Qazvin, Iran
Abstract :
Proper performance of biped robots in various indoor environment conditions depends on reliable landmark detection and self-localization. Probabilistic approaches are among the most capable methods to present a real-time and inclusive solution for biped robot´s localization. This paper focuses on the newly proposed odometry system implementing the kinematic model, predictive estimator of the camera position, particle filter methods such as Monte Carlo Localization (MCL) and Augmented MCL with utilization of landmarks, lines, points, and optimized filtering parameters for robots´ state estimation. Moreover, kidnap scenarios which could not be considered and handled with the uni-modal Kalman filter-based techniques, are studied here for the Nao biped robots on the RoboCup standard platform league´s soccer filed. Experimental data are employed to evaluate effectiveness and performance of the proposed vision module and augmented MCL scheme.
Keywords :
Kalman filters; Monte Carlo methods; legged locomotion; multi-robot systems; particle filtering (numerical methods); Kalman filter; Monte Carlo localization; Nao biped robots; RoboCup; augmented MCL; indoor environment; kinematic model; particle filter based localization; predictive estimator; reliable landmark detection; self-localization; Calibration; Cameras; Joints; Kinematics; Legged locomotion; Robot vision systems; Monte Carlo localization; biped robots; particle filter; self-localization;
Conference_Titel :
System Theory (SSST), 2012 44th Southeastern Symposium on
Conference_Location :
Jacksonville, FL
Print_ISBN :
978-1-4577-1492-4
DOI :
10.1109/SSST.2012.6195128