• DocumentCode
    2015017
  • Title

    Neural networks for web server workload forecasting

  • Author

    Tran, Van Giang ; Debusschere, Vincent ; Bacha, Seddik

  • Author_Institution
    Univ. Grenoble Alpes, G2Elab, Grenoble, France
  • fYear
    2013
  • fDate
    25-28 Feb. 2013
  • Firstpage
    1152
  • Lastpage
    1156
  • Abstract
    This paper presents a comparative study of five intelligent forecast models for workload of server defined as HTTP requests. These five forecast models are based on the methodology: Nonlinear AutoRegressive model with eXogenous Inputs (NARX), Multilayer Perceptron (MLP), Elman, Cascade-Neural Network (CCNN) and Pattern Recognition Neural Network (PRNN). The best accuracy prediction is given by the NARX model. This work takes parts in development of our forecast models in the project EnergeTic-FUI, France.
  • Keywords
    autoregressive processes; file servers; multilayer perceptrons; pattern recognition; CCNN; Elman neural network; EnergeTic-FUI; France; HTTP requests; MLP; NARX; PRNN; Web server workload forecasting; cascade-neural network; intelligent forecast models; multilayer perceptron; nonlinear autoregressive model with exogenous inputs; pattern recognition neural network; Computational modeling; Forecasting; Hidden Markov models; Neural networks; Neurons; Predictive models; Servers; EnergeTIC-FUI; Neural network; data center workload forecasting; intelligent computational; server workload;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Technology (ICIT), 2013 IEEE International Conference on
  • Conference_Location
    Cape Town
  • Print_ISBN
    978-1-4673-4567-5
  • Electronic_ISBN
    978-1-4673-4568-2
  • Type

    conf

  • DOI
    10.1109/ICIT.2013.6505835
  • Filename
    6505835