DocumentCode
2015017
Title
Neural networks for web server workload forecasting
Author
Tran, Van Giang ; Debusschere, Vincent ; Bacha, Seddik
Author_Institution
Univ. Grenoble Alpes, G2Elab, Grenoble, France
fYear
2013
fDate
25-28 Feb. 2013
Firstpage
1152
Lastpage
1156
Abstract
This paper presents a comparative study of five intelligent forecast models for workload of server defined as HTTP requests. These five forecast models are based on the methodology: Nonlinear AutoRegressive model with eXogenous Inputs (NARX), Multilayer Perceptron (MLP), Elman, Cascade-Neural Network (CCNN) and Pattern Recognition Neural Network (PRNN). The best accuracy prediction is given by the NARX model. This work takes parts in development of our forecast models in the project EnergeTic-FUI, France.
Keywords
autoregressive processes; file servers; multilayer perceptrons; pattern recognition; CCNN; Elman neural network; EnergeTic-FUI; France; HTTP requests; MLP; NARX; PRNN; Web server workload forecasting; cascade-neural network; intelligent forecast models; multilayer perceptron; nonlinear autoregressive model with exogenous inputs; pattern recognition neural network; Computational modeling; Forecasting; Hidden Markov models; Neural networks; Neurons; Predictive models; Servers; EnergeTIC-FUI; Neural network; data center workload forecasting; intelligent computational; server workload;
fLanguage
English
Publisher
ieee
Conference_Titel
Industrial Technology (ICIT), 2013 IEEE International Conference on
Conference_Location
Cape Town
Print_ISBN
978-1-4673-4567-5
Electronic_ISBN
978-1-4673-4568-2
Type
conf
DOI
10.1109/ICIT.2013.6505835
Filename
6505835
Link To Document