DocumentCode :
2018285
Title :
HybridMiner: Mining Maximal Frequent Itemsets Using Hybrid Database Representation Approach
Author :
Bashir, Shariq ; Baig, A. Rauf
Author_Institution :
FAST, Nat. Univ. of Comput. & Emerging Sci., Islamabad
fYear :
2005
fDate :
24-25 Dec. 2005
Firstpage :
1
Lastpage :
7
Abstract :
In this paper we present a novel hybrid (array-based layout and vertical bitmap layout) database representation approach for mining complete maximal frequent itemset (MFI) on sparse and large datasets. Our work is novel in terms of scalability, item search order and two horizontal and vertical projection techniques. We also present a maximal algorithm using this hybrid database representation approach. Different experimental results on real and sparse benchmark datasets show that our approach is better than previous state of art maximal algorithms
Keywords :
data mining; database management systems; HybridMiner; array-based layout; hybrid database representation; maximal frequent itemsets mining; sparse datasets; vertical bitmap layout; Art; Association rules; Data mining; Filtering; Frequency; Itemsets; Pattern analysis; Scalability; Tail; Transaction databases;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
9th International Multitopic Conference, IEEE INMIC 2005
Conference_Location :
Karachi
Print_ISBN :
0-7803-9429-1
Electronic_ISBN :
0-7803-9430-5
Type :
conf
DOI :
10.1109/INMIC.2005.334484
Filename :
4133499
Link To Document :
بازگشت