DocumentCode :
2022120
Title :
Blind Source Separation Using PICA Network
Author :
Wan, Min ; Zhang, Xinli ; Yi, Zhang
Author_Institution :
Sch. of Comput. Sci. & Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu
Volume :
1
fYear :
2008
fDate :
17-18 Oct. 2008
Firstpage :
491
Lastpage :
494
Abstract :
The principal independent component analysis (PICA) network is used to the real-valued source signals blind separation with a reference. It´s proved in this paper that when a reference signal $r$ is available, the blind source separation can be transformed to the eigenvalue eigenvector decomposition of a real symmetric matrix. When generalized to the multi-reference case, a similar result is obtained. By these results, corresponding algorithms are proposed. Due to existing efficient eigen value decomposition techniques, these algorithms have faster computing speed than other algorithms. Simulations verify the efficiency of the algorithms.
Keywords :
blind source separation; eigenvalues and eigenfunctions; independent component analysis; matrix algebra; principal component analysis; PICA network; blind source separation; eigenvalue eigenvector decomposition; principal independent component analysis; real symmetric matrix; Blind source separation; Computational intelligence; Computer science; Design engineering; Eigenvalues and eigenfunctions; Independent component analysis; Laboratories; Signal design; Signal processing algorithms; Source separation; Blind source separation; eigenvalue; eigenvector; network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Design, 2008. ISCID '08. International Symposium on
Conference_Location :
Wuhan
Print_ISBN :
978-0-7695-3311-7
Type :
conf
DOI :
10.1109/ISCID.2008.79
Filename :
4725656
Link To Document :
بازگشت