DocumentCode :
2024412
Title :
Sequential Monte-Carlo Framework for Dynamic Data-Driven Event Reconstruction for Atmospheric Release
Author :
Johannesson, Gardar ; Dyer, Kathleen M. ; Hanley, William G. ; Kosovic, Branko ; Larsen, Shawn C. ; Loosmore, Gwendolen A. ; Lundquist, Julie K. ; Mirin, Arthur A.
Author_Institution :
Lawrence Livermore National Laboratory, Livermore, CA, USA
fYear :
2006
fDate :
13-15 Sept. 2006
Firstpage :
144
Lastpage :
147
Abstract :
The release of hazardous materials into the atmosphere can have a tremendous impact on dense populations. We propose an atmospheric event reconstruction framework that couples observed data and predictive computer-intensive dispersion models via Bayesian methodology. Due to the complexity of the model framework, a sampling-based approach is taken for posterior inference that combines Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) strategies.
Keywords :
Atmosphere; Atmospheric modeling; Bayesian methods; Biological system modeling; Chemical processes; Hazardous materials; Laboratories; Monte Carlo methods; Predictive models; Sliding mode control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nonlinear Statistical Signal Processing Workshop, 2006 IEEE
Conference_Location :
Cambridge, UK
Print_ISBN :
978-1-4244-0581-7
Electronic_ISBN :
978-1-4244-0581-7
Type :
conf
DOI :
10.1109/NSSPW.2006.4378840
Filename :
4378840
Link To Document :
بازگشت