DocumentCode :
2026086
Title :
From Global to Local Bayesian Parameter Estimation in Image Restoration using Variational Distribution Approximations
Author :
Molina, Rafael ; Vega, Miguel ; Katsaggelos, Aggelos K.
Author_Institution :
Univ. de Granada, Granada
Volume :
1
fYear :
2007
fDate :
Sept. 16 2007-Oct. 19 2007
Abstract :
In this paper we present a new Bayesian methodology for the restoration of blurred and noisy images. Bayesian methods rely on image priors that encapsulate prior image knowledge and avoid the ill-posedness of the image restoration problems. Some of these priors depend on global variance parameters, unable to account for local characteristics. Here we first use variational methods to approximate probability posterior distributions for the global model to later use those distributions to define local and more realistic image models which lead to better restored images as it is shown in the experimental section.
Keywords :
Bayes methods; approximation theory; image restoration; parameter estimation; Bayesian parameter estimation; global variance parameters; image restoration; knowledge encapsulation; probability posterior distributions; variational distribution approximations; variational methods; Bayesian methods; Computer science; Degradation; Gaussian noise; Image restoration; Parameter estimation; Performance analysis; Pixel; Random variables; TV; Bayesian models; Image restoration; parameter estimation; regularization; variational methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2007. ICIP 2007. IEEE International Conference on
Conference_Location :
San Antonio, TX
ISSN :
1522-4880
Print_ISBN :
978-1-4244-1437-6
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2007.4378906
Filename :
4378906
Link To Document :
بازگشت